
Flask-Restless Documentation

Jeffrey Finkelstein

Oct 14, 2023

CONTENTS

1 User’s guide 3
1.1 Downloading and installing Flask-Restless-NG 3
1.2 Quickstart . 3
1.3 Creating API endpoints . 5
1.4 Requests and responses . 9
1.5 Customizing the ReSTful interface . 39

2 API reference 51
2.1 API . 51

3 Additional information 61
3.1 Similar projects . 61
3.2 Copyright and license . 61
3.3 Changelog . 62
3.4 Changes in Flask-Restless-NG . 62
3.5 Original Flask-Restless . 67

Index 69

i

ii

Flask-Restless Documentation,

Flask-Restless provides simple generation of ReSTful APIs for database models de-
fined using SQLAlchemy (or Flask-SQLAlchemy). The generated APIs satisfy the re-
quirements of the JSON API specification.

CONTENTS 1

http://jsonapi.org

Flask-Restless Documentation,

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

How to use Flask-Restless in your own projects. Much of the documentation in this
chapter assumes some familiarity with the terminology and interfaces of the JSON API
specification.

1.1 Downloading and installing Flask-Restless-NG

Flask-Restless can be downloaded from the Python Package Index. The development
version can be downloaded from GitHub. However, it is better to install with pip (in
a virtual environment provided by virtualenv):

pip install Flask-Restless-NG

Flask-Restless supports Python 3.6+

Flask-Restless has the following dependencies (which will be automatically installed
if you use pip):

• Flask version 1.0 or greater

• SQLAlchemy version 1.3 or greater

• python-dateutil version strictly greater than 2.2

• Flask-SQLAlchemy, only if you want to define your models using Flask-
SQLAlchemy

1.2 Quickstart

For the restless:

import flask
import flask_restless
import flask_sqlalchemy

(continues on next page)

3

https://pypi.python.org/pypi/Flask-Restless-NG
https://github.com/mrevutskyi/flask-restless-ng
http://flask.pocoo.org
https://sqlalchemy.org
http://labix.org/python-dateutil
https://packages.python.org/Flask-SQLAlchemy

Flask-Restless Documentation,

(continued from previous page)

Create the Flask application and the Flask-SQLAlchemy object.
app = flask.Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = flask_sqlalchemy.SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)
birth_date = db.Column(db.Date)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.Unicode)
published_at = db.Column(db.DateTime)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

Create the database tables.
db.create_all()

Create the Flask-Restless API manager.
manager = flask_restless.APIManager(app, session=db.session)

Create API endpoints, which will be available at /api/<tablename> by
default. Allowed HTTP methods can be specified as well.
manager.create_api(Person, methods=['GET', 'POST', 'DELETE'])
manager.create_api(Article, methods=['GET'])

start the flask loop
app.run()

You may find this example at examples/quickstart.py in the source distribution; you
may also view it online. Further examples can be found in the examples/ directory in
the source distribution or on the web

4 Chapter 1. User’s guide

https://github.com/mrevutskyi/flask-restless-ng/tree/master/examples/quickstart.py
https://github.com/mrevutskyi/flask-restless-ng/flask-restless/tree/master/examples

Flask-Restless Documentation,

1.3 Creating API endpoints

To use this extension, you must have defined your database models using either
SQLAlchemy or Flask-SQLALchemy. The basic setup in either case is nearly the same.

If you have defined your models with Flask-SQLAlchemy, first, create your Flask ob-
ject, SQLAlchemy object, and model classes as usual but with one additional restriction:
each model must have a primary key column named id of type sqlalchemy.Integer
or type sqlalchemy.Unicode.

from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()

If you are using pure SQLAlchemy:

from flask import Flask
from sqlalchemy import Column, Integer, Unicode
from sqlalchemy import ForeignKey
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import backref, relationship
from sqlalchemy.orm import scoped_session, sessionmaker

app = Flask(__name__)
engine = create_engine('sqlite:////tmp/testdb.sqlite', convert_
↪→unicode=True)
Session = sessionmaker(autocommit=False, autoflush=False, bind=engine)
mysession = scoped_session(Session)

Base = declarative_base()
Base.metadata.bind = engine

(continues on next page)

1.3. Creating API endpoints 5

https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask

Flask-Restless Documentation,

(continued from previous page)

class Person(Base):
id = Column(Integer, primary_key=True)

class Article(Base):
id = Column(Integer, primary_key=True)
author_id = Column(Integer, ForeignKey('person.id'))
author = relationship(Person, backref=backref('articles'))

Base.metadata.create_all()

Second, instantiate an APIManager object with the Flask and SQLAlchemy objects:

from flask_restless import APIManager

manager = APIManager(app, session=db.session)

Or if you are using pure SQLAlchemy, specify the session you created above instead:

manager = APIManager(app, session=mysession)

Third, create the API endpoints that will be accessible to web clients:

person_blueprint = manager.create_api(Person, methods=['GET', 'POST'])
article_blueprint = manager.create_api(Article)

You can specify which HTTP methods are available for each API endpoint. In this
example, the client can fetch and create people, but only fetch articles (the default if no
methods are specified). There are many options for customizing the endpoints created
at this step; for more information, see Customizing the ReSTful interface.

Due to the design of Flask, these APIs must be created before your application handles
any requests. The return value of APIManager.create_api() is the blueprint in which
the endpoints for the specified database model live. The blueprint has already been
registered on the Flask application, so you do not need to register it yourself. It is
provided so that you can examine its attributes, but if you don’t need it then just
ignore it:

methods = ['GET', 'POST']
manager.create_api(Person, methods=methods)
manager.create_api(Article)

If you wish to create the blueprint for the API without registering it (for example, if
you wish to register it manually later in your code), use the create_api_blueprint()
method instead. You must provide an additional positional argument, name, to this
method:

6 Chapter 1. User’s guide

https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask

Flask-Restless Documentation,

blueprint = manager.create_api_blueprint('person', Person, methods=methods)
later...
someapp.register_blueprint(blueprint)

By default, the API for Person in the above code samples will be accessible at
<base_url>/api/person, where the person part of the URL is the value of Person.
__tablename__:

>>> import json
>>> # The python-requests library is installable from PyPI.
>>> import requests
>>> # Let's create a new person resource with the following fields.
>>> newperson = {'type': 'person', 'name': u'Lincoln', 'age': 23}
>>> # Our requests must have the appropriate JSON API headers.
>>> headers = {'Content-Type': 'application/vnd.api+json',
... 'Accept': 'application/vnd.api+json'}
>>> # Assume we have a Flask application running on localhost.
>>> r = requests.post('http://localhost/api/person',
... data=json.dumps(newperson), headers=headers)
>>> r.status_code
201
>>> document = json.loads(r.data)
>>> dumps(document, indent=2)
{

"data": {
"id": "1",
"type": "person",
"relationships": {

"articles": {
"data": [],
"links": {
"related": "http://localhost/api/person/1/articles",
"self": "http://localhost/api/person/1/relationships/articles"

}
},

},
"links": {

"self": "http://localhost/api/person/1"
}

}
"meta": {},
"jsonapi": {

"version": "1.0"
}

}
>>> newid = document['data']['id']
>>> r = requests.get('/api/person/{0}'.format(newid), headers=headers)

(continues on next page)

1.3. Creating API endpoints 7

Flask-Restless Documentation,

(continued from previous page)

>>> r.status_code
200
>>> document = loads(r.data)
>>> dumps(document, indent=2)
{

"data": {
"id": "1",
"type": "person",
"relationships": {

"articles": {
"data": [],
"links": {
"related": "http://localhost/api/person/1/articles",
"self": "http://localhost/api/person/1/relationships/articles"

}
},

},
"links": {

"self": "http://localhost/api/person/1"
}

}
"meta": {},
"jsonapi": {

"version": "1.0"
}

}

If the primary key is a Unicode instead of an Integer, the instances will be accessi-
ble at URL endpoints like http://<host>:<port>/api/person/foo instead of http://
<host>:<port>/api/person/1.

1.3.1 Deferred API registration

If you only wish to create APIs on a single Flask application and have access to the
Flask application before you create the APIs, you can provide a Flask application as
an argument to the constructor of the APIManager class, as described above. However,
if you wish to create APIs on multiple Flask applications or if you do not have access
to the Flask application at the time you create the APIs, you can use the APIManager.
init_app() method.

If a APIManager object is created without a Flask application,

manager = APIManager(session=session)

then you can create your APIs without registering them on a particular Flask applica-
tion:

8 Chapter 1. User’s guide

Flask-Restless Documentation,

manager.create_api(Person)
manager.create_api(Article)

Later, you can call the init_app() method with any Flask objects on which you would
like the APIs to be available:

app1 = Flask('app1')
app2 = Flask('app2')
manager.init_app(app1)
manager.init_app(app2)

The manager creates and stores a blueprint each time create_api() is invoked, and
registers those blueprints each time init_app() is invoked. (The name of each
blueprint will be a uuid.UUID.)

Changed in version 1.0.0: The behavior of the init_app() method was strange and
incorrect before version 1.0.0. It is best not to use earlier versions.

1.4 Requests and responses

Requests and responses are all in the JSON API format, so each request must include
an Accept header whose value is application/vnd.api+json and any request that con-
tains content must include a Content-Type header whose value is application/vnd.
api+json. If they do not, the client will receive an error response.

This section of the documentation assumes some familiarity with the JSON API spec-
ification.

1.4.1 Fetching resources and relationships

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

class Article(db.Model):
(continues on next page)

1.4. Requests and responses 9

https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2
https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5

Flask-Restless Documentation,

(continued from previous page)

id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, session=db.session)
manager.create_api(Person)
manager.create_api(Article)

By default, all columns and relationships will appear in the resource object represen-
tation of an instance of your model. See Specifying which fields appear in responses for
more information on specifying which values appear in responses.

To fetch a collection of resources, the request

GET /api/person HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"relationships": {

"articles": {
"data": [],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles

↪→"
}

}
},
"type": "person"

}
],
"links": {

"first": "http://example.com/api/person?page[number]=1&page[size]=10",
"last": "http://example.com/api/person?page[number]=1&page[size]=10",

(continues on next page)

10 Chapter 1. User’s guide

Flask-Restless Documentation,

(continued from previous page)

"next": null,
"prev": null,
"self": "http://example.com/api/person"

},
"meta": {

"total": 1
}

}

To fetch a single resource, the request

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"relationships": {

"articles": {
"data": [],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

}
}

To fetch a resource from a to-one relationship, the request

GET /api/article/1/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

1.4. Requests and responses 11

Flask-Restless Documentation,

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"relationships": {

"articles": {
"data": [
{

"id": "1",
"type": "article"

}
],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

}
}

},
"type": "person"

}
}

To fetch a resource from a to-many relationship, the request

GET /api/person/1/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"id": "2",
"links": {

"self": "http://example.com/api/articles/2"
},
"relationships": {

"author": {
(continues on next page)

12 Chapter 1. User’s guide

Flask-Restless Documentation,

(continued from previous page)

"data": {
"id": "1",
"type": "person",

},
"links": {

"related": "http://example.com/api/articles/2/author",
"self": "http://example.com/api/articles/2/relationships/author

↪→"
}

}
},
"type": "article"

}
],
"links": {

"first": "http://example.com/api/person/1/articles?page[number]=1&
↪→page[size]=10",

"last": "http://example.com/api/person/1/articles?page[number]=1&
↪→page[size]=10",

"next": null,
"prev": null,
"self": "http://example.com/api/person/1/articles"

},
"meta": {

"total": 1
}

}

To fetch a single resource from a to-many relationship, the request

GET /api/person/1/articles/2 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "2",
"links": {

"self": "http://example.com/api/articles/2"
},
"relationships": {

(continues on next page)

1.4. Requests and responses 13

Flask-Restless Documentation,

(continued from previous page)

"author": {
"data": {

"id": "1",
"type": "person"

},
"links": {
"related": "http://example.com/api/articles/2/author",
"self": "http://example.com/api/articles/2/relationships/author"

}
}

},
"type": "article"

}
}

To fetch the link object for a to-one relationship, the request

GET /api/article/1/relationships/author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "1",
"type": "person"

}
}

To fetch the link objects for a to-many relationship, the request

GET /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
(continues on next page)

14 Chapter 1. User’s guide

Flask-Restless Documentation,

(continued from previous page)

"id": "1",
"type": "article"

},
{

"id": "2",
"type": "article"

}
]

}

Inclusion of related resources

For more information on client-side included resources, see Inclusion of Related Resources
in the JSON API specification.

By default, no related resources will be included in a compound document on requests
that would return data. For the client to request that the response includes related
resources in a compound document, use the include query parameter. For example,
to fetch a single resource and include all resources related to it, the request

GET /api/person/1?include=articles HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"relationships": {

"articles": {
"data": [
{

"id": "1",
"type": "article"

}
],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles"

(continues on next page)

1.4. Requests and responses 15

http://jsonapi.org/format/#fetching-includes

Flask-Restless Documentation,

(continued from previous page)

}
}

},
"type": "person"

}
"included": [

{
"id": "1",
"links": {

"self": "http://example.com/api/article/1"
},
"relationships": {

"author": {
"data": {

"id": "1",
"type": "person"

},
"links": {

"related": "http://example.com/api/article/1/author",
"self": "http://example.com/api/article/1/relationships/author"

}
}

},
"type": "article"

}
]

}

To specify a default set of related resources to include when the client does not specify
any include query parameter, use the includes keyword argument to the APIManager.
create_api() method.

Specifying which fields appear in responses

For more information on client-side sparse fieldsets, see Sparse Fieldsets in the JSON API
specification.

Warning: The server-side configuration for specifying which fields appear in re-
source objects as described in this section is simplistic; a better way to specify which
fields are included in your responses is to use a Python object serialization library
and specify custom serialization and deserialization functions as described in Cus-
tom serialization.

By default, all fields of your model will be exposed by the API. A client can request
that only certain fields appear in the resource object in a response to a GET request

16 Chapter 1. User’s guide

http://jsonapi.org/format/#fetching-sparse-fieldsets
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1

Flask-Restless Documentation,

by using the only query parameter. On the server side, you can specify which fields
appear in the resource object representation of an instance of the model by setting
the only, exclude and additional_attributes keyword arguments to the APIManager.
create_api() method.

If only is an iterable of column names or actual column attributes, only those fields
will appear in the resource object that appears in responses to fetch instances of this
model. If instead exclude is specified, all fields except those specified in that iterable
will appear in responses. If additional_attributes is an iterable of column names,
the values of these attributes will also appear in the response; this is useful if you wish
to see the value of some attribute that is not a column or relationship.

Attention: The type and id elements will always appear in the resource object,
regardless of whether the server or the client tries to exclude them.

For example, if your models are defined like this (using Flask-SQLAlchemy):

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)
birthday = db.Column(db.Date)
articles = db.relationship('Article')

This class attribute is not a column.
foo = 'bar'

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))

and you want your resource objects to include only the values of the name and birthday
columns, create your API with the following arguments:

apimanager.create_api(Person, only=['name', 'birthday'])

Now a request like

GET /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
(continues on next page)

1.4. Requests and responses 17

Flask-Restless Documentation,

(continued from previous page)

"data": {
"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"attributes": {

"birthday": "1969-07-20",
"name": "foo"

},
"type": "person"

}
}

If you want your resource objects to exclude the birthday and name columns:

apimanager.create_api(Person, exclude=['name', 'birthday'])

Now the same request yields the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"id": "1",
"links": {

"self": "http://example.com/api/person/1"
}
"relationships": {

"articles": {
"data": [],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/links/articles"

}
},

},
"type": "person"

}
}

If you want your resource objects to include the value for the class attribute foo:

apimanager.create_api(Person, additional_attributes=['foo'])

Now the same request yields the response

18 Chapter 1. User’s guide

Flask-Restless Documentation,

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": {

"attributes": {
"birthday": "1969-07-20",
"foo": "bar",
"name": "foo"

},
"id": "1",
"links": {

"self": "http://example.com/api/person/1"
}
"relationships": {

"articles": {
"data": [],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/links/articles"

}
}

},
"type": "person"

}
}

Sorting

Clients can sort according to the sorting protocol described in the Sorting section of
the JSON API specification. Sorting by a nullable attribute will cause resources with
null attributes to appear first.

If sort parameter is not specified, data is sorted using the primary key

Clients can disable default sorting by using sort=0

Pagination

Pagination works as described in the JSON API specification, via the page[number]
and page[size] query parameters. Pagination respects sorting and filtering. The first
page is page one. If no page number is specified by the client, the first page will be
returned. By default, pagination is enabled and the page size is ten. If the page size
specified by the client is greater than the maximum page size as configured on the
server, then the query parameter will be ignored.

To set the default page size for collections of resources, use the page_size keyword

1.4. Requests and responses 19

http://jsonapi.org/format/#fetching-sorting

Flask-Restless Documentation,

argument to the APIManager.create_api() method. To set the maximum page size
that the client can request, use the max_page_size argument. Even if page_size is
greater than max_page_size, at most max_page_size resources will be returned in a
page. If max_page_size is set to anything but a positive integer, the client will be able
to specify arbitrarily large page sizes. If, further, page_size is set to anything but a
positive integer, pagination will be disabled by default, and any GET request that does
not specify a page size in its query parameters will get a response with all matching
results.

Attention: Disabling pagination can result in arbitrarily large responses!

For example, to set each page to include only two results:

apimanager.create_api(Person, page_size=2)

Then a GET request to /api/person?page[number]=2 would yield the response

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"id": "3",
"type": "person",
"attributes": {

"name": "John"
}

}
{

"id": "4",
"type": "person",
"attributes": {

"name": "Paul"
}

}
],
"links": {

"first": "http://example.com/api/person?page[number]=1&page[size]=2",
"last": "http://example.com/api/person?page[number]=3&page[size]=2",
"next": "http://example.com/api/person?page[number]=3&page[size]=2",
"prev": "http://example.com/api/person?page[number]=1&page[size]=2",
"self": "http://example.com/api/person"

},
"meta": {

"total": 6
(continues on next page)

20 Chapter 1. User’s guide

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1

Flask-Restless Documentation,

(continued from previous page)

}
}

Filtering

Requests that would normally return a collection of resources can be filtered so that
only a subset of the resources are returned in a response. If the client specifies the
filter[objects] query parameter, it must be a URL encoded JSON list of filter objects,
as described below.

Quick client examples for filtering

The following are some quick examples of making filtered GET requests from different
types of clients. More complete documentation is in subsequent sections. In these
examples, each client will filter by instances of the model Person whose names contain
the letter “y”.

Using the Python requests library:

import requests
import json

url = 'http://127.0.0.1:5000/api/person'
headers = {'Accept': 'application/vnd.api+json'}

filters = [dict(name='name', op='like', val='%y%')]
params = {'filter[objects]': json.dumps(filters)}

response = requests.get(url, params=params, headers=headers)
assert response.status_code == 200
print(response.json())

Using jQuery:

var filters = [{"name": "id", "op": "like", "val": "%y%"}];
$.ajax({

data: {"filter[objects]": JSON.stringify(filters)},
headers: {

"Accept": JSONAPI_MIMETYPE
},
success: function(data) { console.log(data.objects); },
url: 'http://127.0.0.1:5000/api/person'

});

Using curl:

1.4. Requests and responses 21

https://en.wikipedia.org/wiki/Percent-encoding
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
http://docs.python-requests.org/en/latest/
http://jquery.com/
http://curl.haxx.se/

Flask-Restless Documentation,

curl \
-G \
-H "Accept: application/vnd.api+json" \
-d "filter[objects]=[{\"name\":\"name\",\"op\":\"like\",\"val\":\"%y%\"}]

↪→" \
http://127.0.0.1:5000/api/person

The examples/ directory has more complete versions of these examples.

Filter objects

A filter object is a JSON object. Filter objects are defined recursively as follows. A filter
object may be of the form

{"name": <field_name>, "op": <unary_operator>}

where <field_name> is the name of a field on the model whose instances are being
fetched and <unary_operator> is the name of one of the unary operators supported by
Flask-Restless. For example,

{"name": "birthday", "op": "is_null"}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "val": <argument>}

where <binary_operator> is the name of one of the binary operators supported by
Flask-Restless and <argument> is the second argument to that binary operator. For
example,

{"name": "age", "op": "gt", "val": 23}

A filter object may be of the form

{"name": <field_name>, "op": <binary_operator>, "field": <field_name>}

The field element indicates that the second argument to the binary operator should
be the value of that field. For example, to filter by resources that have a greater width
than height,

{"name": "width", "op": "gt", "field": "height"}

A filter object may be of the form

{"name": <relation_name>, "op": <relation_operator>, "val": <filter_object>
↪→}

22 Chapter 1. User’s guide

Flask-Restless Documentation,

where <relation_name> is the name of a relationship on the model whose resources
are being fetched, <relation_operator> is either "has", for a to-one relationship, or
"any", for a to-many relationship, and <filter_object> is another filter object. For
example, to filter person resources by only those people that have authored an article
dated before January 1, 2010,

{
"name": "articles",
"op": "any",
"val": {

"name": "date",
"op": "lt",
"val": "2010-01-01"

}
}

For another example, to filter article resources by only those articles that have an au-
thor of age at most fifty,

{
"name": "author",
"op": "has",
"val": {

"name": "age",
"op": "lte",
"val": 50

}
}

A filter object may be a conjunction (“and”) or disjunction (“or”) of other filter objects:

{"or": [<filter_object>, <filter_object>, ...]}

or

{"and": [<filter_object>, <filter_object>, ...]}

For example, to filter by resources that have width greater than height, and length of
at least ten,

{
"and": [

{"name": "width", "op": "gt", "field": "height"},
{"name": "length", "op": "lte", "val": 10}

]
}

How are filter objects used in practice? To get a response in which only those resources
that meet the requirements of the filter objects are returned, clients can make requests
like this:

1.4. Requests and responses 23

Flask-Restless Documentation,

GET /api/person?filter[objects]=[{"name":"age","op":"<","val":18}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

Operators

Flask-Restless understands the following operators, which correspond to the appro-
priate SQLAlchemy column operators.

• ==, eq, equals, equals_to

• !=, neq, does_not_equal, not_equal_to

• >, gt, <, lt

• >=, ge, gte, geq, <=, le, lte, leq

• in, not_in

• is_null, is_not_null

• like, ilike, not_like

• has

• any

Flask-Restless also understands the PostgreSQL network address operators <<, <<=,
>>, >>=, <>, and &&.

Warning: If you use a percent sign in the argument to the like operator (for
example, %somestring%), make sure it is percent-encoded, otherwise the server may
interpret the first few characters of that argument as a percent-encoded character
when attempting to decode the URL.

Filter object examples

Attribute greater than a value

On request

GET /api/person?filter[objects]=[{"name":"age","op":"gt","val":18}] HTTP/1.
↪→1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age attribute greater
than or equal to 18:

24 Chapter 1. User’s guide

https://docs.sqlalchemy.org/en/latest/core/expression_api.html#sqlalchemy.sql.operators.ColumnOperators
https://www.postgresql.org/docs/current/static/functions-net.html
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_the_percent_character

Flask-Restless Documentation,

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"attributes": {

"age": 19
},
"id": "2",
"links": {

"self": "http://example.com/api/person/2"
},
"type": "person"

},
{

"attributes": {
"age": 29

},
"id": "5",
"links": {

"self": "http://example.com/api/person/5"
},
"type": "person"

},
],
"links": {

"self": "/api/person?filter[objects]=[{\"name\":\"age\",\"op\":\"gt\",\
↪→"val\":18}]"
},
"meta": {

"total": 2
}

}

Arbitrary Boolean expression of filters

On request

GET /api/person?filter[objects]=[{"or":[{"name":"age","op":"lt","val":10},{
↪→"name":"age","op":"gt","val":20}]}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Person instances that have age attribute either less
than 10 or greater than 20:

1.4. Requests and responses 25

Flask-Restless Documentation,

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"attributes": {

"age": 9
},
"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"type": "person"

},
{

"attributes": {
"age": 25

},
"id": "3",
"links": {

"self": "http://example.com/api/person/3"
},
"type": "person"

}
],
"links": {

"self": "/api/person?filter[objects]=[{\"or\":[{\"name\":\"age\",\"op\
↪→":\"lt\",\"val\":10},{\"name\":\"age\",\"op\":\"gt\",\"val\":20}]}]"
},
"meta": {

"total": 2
}

}

Comparing two attributes

On request

GET /api/box?filter[objects]=[{"name":"width","op":"ge","field":"height"}]␣
↪→HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those Box instances that have width attribute greater
than or equal to the value of the height attribute:

26 Chapter 1. User’s guide

Flask-Restless Documentation,

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"attributes": {

"height": 10,
"width": 20

}
"id": "1",
"links": {

"self": "http://example.com/api/box/1"
},
"type": "box"

},
{

"attributes": {
"height": 15,
"width": 20

}
"id": "2",
"links": {

"self": "http://example.com/api/box/2"
},
"type": "box"

}
],
"links": {

"self": "/api/box?filter[objects]=[{\"name\":\"width\",\"op\":\"ge\",\
↪→"field\":\"height\"}]"
},
"meta": {

"total": 100
}

}

Using has and any

On request

GET /api/person?filter[objects]=[{"name":"articles","op":"any","val":{"name
↪→":"date","op":"lt","val":"2010-01-01"}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

1.4. Requests and responses 27

Flask-Restless Documentation,

the response will include only those people that have authored an article dated before
January 1, 2010 (assume in the example below that at least one of the article linkage
objects refers to an article that has such a date):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"id": "1",
"links": {

"self": "http://example.com/api/person/1"
},
"relationships": {

"articles": {
"data": [

{
"id": "1",
"type": "article"

},
{

"id": "2",
"type": "article"

}
],
"links": {

"related": "http://example.com/api/person/1/articles",
"self": "http://example.com/api/person/1/relationships/articles

↪→"
}

}
},
"type": "person"

}
],
"links": {

"self": "/api/person?filter[objects]=[{\"name\":\"articles\",\"op\":\
↪→"any\",\"val\":{\"name\":\"date\",\"op\":\"lt\",\"val\":\"2010-01-01\"}}]
↪→"
},
"meta": {

"total": 1
}

}

On request

28 Chapter 1. User’s guide

Flask-Restless Documentation,

GET /api/article?filter[objects]=[{"name":"author","op":"has","val":{"name
↪→":"age","op":"lte","val":50}}] HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

the response will include only those articles that have an author of age at most fifty
(assume in the example below that the author linkage objects refers to a person that
has such an age):

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
"data": [

{
"id": "1",
"links": {

"self": "http://example.com/api/article/1"
},
"relationships": {

"author": {
"data": {

"id": "7",
"type": "person"

},
"links": {

"related": "http://example.com/api/article/1/author",
"self": "http://example.com/api/article/1/relationships/author"

}
}

},
"type": "article"

}
],
"links": {

"self": "/api/article?filter[objects]=[{\"name\":\"author\",\"op\":\
↪→"has\",\"val\":{\"name\":\"age\",\"op\":\"lte\",\"val\":50}}]"
},
"meta": {

"total": 1
}

}

1.4. Requests and responses 29

Flask-Restless Documentation,

1.4.2 Creating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

db.create_all()
manager = APIManager(app, session=db.session)
manager.create_api(Person, methods=['POST'])

To create a new resource, the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {

"type": "person",
"attributes": {

"name": "foo"
}

}
}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/1
Content-Type: application/vnd.api+json

{
"data": {

"attributes": {
"name": "foo"

},
(continues on next page)

30 Chapter 1. User’s guide

Flask-Restless Documentation,

(continued from previous page)

"id": "1",
"jsonapi": {

{"version": "1.0"}
},
"links": {

"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-
↪→4cbb58b9ee34"

},
"meta": {},
"type": "person"

}
}

To create a new resource with a client-generated ID (if enabled by setting
allow_client_generated_ids to True in APIManager.create_api()), the request

POST /api/person HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {

"type": "person",
"id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
"attributes": {

"name": "foo"
}

}
}

yields the response

HTTP/1.1 201 Created
Location: http://example.com/api/person/bd34b544-ad39-11e5-a2aa-
↪→4cbb58b9ee34
Content-Type: application/vnd.api+json

{
"data": {

"attributes": {
"name": "foo"

},
"id": "bd34b544-ad39-11e5-a2aa-4cbb58b9ee34",
"links": {

"self": "http://example.com/api/person/bd34b544-ad39-11e5-a2aa-
(continues on next page)

1.4. Requests and responses 31

Flask-Restless Documentation,

(continued from previous page)

↪→4cbb58b9ee34"
},
"meta": {},
"jsonapi": {

{"version": "1.0"}
},
"type": "person"

}
}

The server always responds with 201 Created and a complete resource object on a
request with a client-generated ID.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

1.4.3 Deleting resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

db.create_all()
manager = APIManager(app, session=db.session)
manager.create_api(Person, method=['DELETE'])

To delete a resource, the request

DELETE /api/person/1 HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

yields a 204 No Content response.

32 Chapter 1. User’s guide

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation,

1.4.4 Updating resources

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, session=db.sesion)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update an existing resource, the request

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {

"type": "person",
"id": 1,
"attributes": {

"name": "foo"
}

}
}

yields a 204 No Content response.

If you set the allow_to_many_replacement keyword argument of APIManager.
create_api() to True, you can replace a to-many relationship entirely by making a
request to update a resource. To update a to-many relationship, the request

1.4. Requests and responses 33

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation,

PATCH /api/person/1 HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {

"type": "person",
"id": 1,
"relationships": {

"articles": {
"data": [
{

"id": "1",
"type": "article"

},
{

"id": "2",
"type": "article"

}
]

}
}

}
}

yields a 204 No Content response.

The server will respond with 400 Bad Request if the request specifies a field that does
not exist on the model.

1.4.5 Updating relationships

For the purposes of concreteness in this section, suppose we have executed the follow-
ing code on the server:

from flask import Flask
from flask.ext.sqlalchemy import SQLAlchemy
from flask.ext.restless import APIManager

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/test.db'
db = SQLAlchemy(app)

class Person(db.Model):
id = db.Column(db.Integer, primary_key=True)

(continues on next page)

34 Chapter 1. User’s guide

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Flask-Restless Documentation,

(continued from previous page)

name = db.Column(db.Unicode)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey('person.id'))
author = db.relationship(Person, backref=db.backref('articles'))

db.create_all()
manager = APIManager(app, session=db.session)
manager.create_api(Person, methods=['PATCH'])
manager.create_api(Article)

To update a to-one relationship, the request

PATCH /api/articles/1/relationships/author HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": {

"type": "person",
"id": 1

}
}

yields a 204 No Content response.

To update a to-many relationship (if enabled by setting allow_to_many_replacement
to True in APIManager.create_api()), the request

PATCH /api/people/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [

{
"type": "article",
"id": 1

},
{

"type": "article",
"id": 2

}
]

(continues on next page)

1.4. Requests and responses 35

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation,

(continued from previous page)

}

yields a 204 No Content response.

To add to a to-many relationship, the request

POST /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [

{
"type": "article",
"id": 1

},
{

"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

To remove from a to-many relationship, the request

DELETE /api/person/1/links/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [

{
"type": "article",
"id": 1

},
{

"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

To remove from a to-many relationship (if enabled by setting

36 Chapter 1. User’s guide

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

Flask-Restless Documentation,

allow_delete_from_to_many_relationships to True in APIManager.create_api()),
the request

DELETE /api/person/1/relationships/articles HTTP/1.1
Host: example.com
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
"data": [

{
"type": "article",
"id": 1

},
{

"type": "article",
"id": 2

}
]

}

yields a 204 No Content response.

1.4.6 Resource ID must be a string

As required by the JSON API, the ID (and type) of a resource must be a string in request
and response documents. This does not mean that the primary key in the database
must be a string, only that it will appear as a string in communications between the
client and the server. For more information, see the Identification section of the JSON
API specification.

1.4.7 Trailing slashes in URLs

API endpoints do not have trailing slashes. A GET request to, for example, /api/
person/ will result in a 404 Not Found response.

1.4.8 Date and time fields

Flask-Restless will automatically parse and convert date and time strings into the cor-
responding Python objects. Flask-Restless also understands intervals (also known as
durations), if you specify the interval as an integer representing the number of units
that the interval spans.

If you want the server to set the value of a date or time field of a model as the current
time (as measured at the server), use one of the special strings "CURRENT_TIMESTAMP",
"CURRENT_DATE", or "LOCALTIMESTAMP". When the server receives one of these strings

1.4. Requests and responses 37

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://jsonapi.org/format/#document-resource-object-identification
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

Flask-Restless Documentation,

in a request, it will use the corresponding SQL function to set the date or time of the
field in the model.

1.4.9 Errors and error messages

Flask-Restless returns the error responses required by the JSON API specification, and
most other server errors yield a 400 Bad Request. Errors are included in the errors
element in the top-level JSON document in the response body.

If a request triggers certain types of errors, the SQLAlchemy session will be rolled
back. Currently these errors are

• DataError,

• IntegrityError,

• ProgrammingError,

• FlushError.

1.4.10 Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a protocol that allows JavaScript HTTP
clients to make HTTP requests across Internet domain boundaries while still protect-
ing against cross-site scripting (XSS) attacks. If you have access to the HTTP server
that serves your Flask application, I recommend configuring CORS there, since such
concerns are beyond the scope of Flask-Restless. However, in case you need to sup-
port CORS at the application level, you should create a function that adds the nec-
essary HTTP headers after the request has been processed by Flask-Restless (that is,
just before the HTTP response is sent from the server to the client) using the flask.
Blueprint.after_request() method:

from flask import Flask
from flask_restless import APIManager

def add_cors_headers(response):
response.headers['Access-Control-Allow-Origin'] = 'example.com'
response.headers['Access-Control-Allow-Credentials'] = 'true'
Set whatever other headers you like...
return response

app = Flask(__name__)
manager = APIManager(app)
blueprint = manager.create_api_blueprint('mypersonapi', Person)
blueprint.after_request(add_cors_headers)
app.register_blueprint(blueprint)

38 Chapter 1. User’s guide

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://docs.sqlalchemy.org/en/20/core/exceptions.html#sqlalchemy.exc.DataError
https://docs.sqlalchemy.org/en/20/core/exceptions.html#sqlalchemy.exc.IntegrityError
https://docs.sqlalchemy.org/en/20/core/exceptions.html#sqlalchemy.exc.ProgrammingError
https://docs.sqlalchemy.org/en/20/orm/exceptions.html#sqlalchemy.orm.exc.FlushError
http://enable-cors.org
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Blueprint.after_request
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Blueprint.after_request

Flask-Restless Documentation,

1.5 Customizing the ReSTful interface

1.5.1 HTTP methods

By default, the APIManager.create_api() method creates a read-only interface; re-
quests with HTTP methods other than GET will cause a response with 405 Method
Not Allowed. To explicitly specify which methods should be allowed for the end-
point, pass a list as the value of keyword argument methods:

apimanager.create_api(Person, methods=['GET', 'POST', 'DELETE'])

This creates an endpoint at /api/person which responds to GET, POST, and DELETE
methods, but not to PATCH.

If you allow GET requests, you will have access to endpoints of the following forms.

GET /api/person

GET /api/person/1

GET /api/person/1/comments

GET /api/person/1/relationships/comments

GET /api/person/1/comments/2

The first four are described explicitly in the JSON API specification. The last is partic-
ular to Flask-Restless; it allows you to access a particular related resource via a rela-
tionship on another resource.

If you allow DELETE requests, you will have access to endpoints of the form

DELETE /api/person/1

If you allow POST requests, you will have access to endpoints of the form

POST /api/person

Finally, if you allow PATCH requests, you will have access to endpoints of the follow-
ing forms.

PATCH /api/person/1

POST /api/person/1/relationships/comments

PATCH /api/person/1/relationships/comments

DELETE /api/person/1/relationships/comments

The last three allow the client to interact with the relationships of a particular resource.
The last two must be enabled explicitly by setting the allow_to_many_replacement
and allow_delete_from_to_many_relationships, respectively, to True when creating
an API using the APIManager.create_api() method.

1.5. Customizing the ReSTful interface 39

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.5
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.5
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc5789#section-2

Flask-Restless Documentation,

1.5.2 API prefix

To create an API at a prefix other than the default /api, use the url_prefix keyword
argument:

apimanager.create_api(Person, url_prefix='/api/v2')

Then your API for Person will be available at /api/v2/person.

1.5.3 Collection name

By default, the name of the collection that appears in the URLs of the API will be the
name of the table that backs your model. If your model is a SQLAlchemy model, this
will be the value of its __table__.name attribute. If your model is a Flask-SQLAlchemy
model, this will be the lowercase name of the model with camel case changed to all-
lowercase with underscore separators. For example, a class named MyModel implies
a collection name of 'my_model'. Furthermore, the URL at which this collection is
accessible by default is /api/my_model.

To provide a different name for the model, provide a string to the collection_name key-
word argument of the APIManager.create_api() method:

apimanager.create_api(Person, collection_name='people')

Then the API will be exposed at /api/people instead of /api/person.

Note: According to the JSON API specification,

Note: This spec is agnostic about inflection rules, so the value of type can
be either plural or singular. However, the same value should be used con-
sistently throughout an implementation.

It’s up to you to make sure your collection names are either all plural or all singular!

1.5.4 Specifying one of many primary keys

If your model has more than one primary key (one called id and one called username,
for example), you should specify the one to use:

manager.create_api(User, primary_key='username')

If you do this, Flask-Restless will create URLs like /api/user/myusername instead of
/api/user/123.

40 Chapter 1. User’s guide

http://jsonapi.org/format/#document-resource-object-identification

Flask-Restless Documentation,

1.5.5 Enable bulk operations

Bulk operations via the JSON API Bulk extension are not yet supported.

1.5.6 Custom serialization

Flask-Restless-NG provides serialization and deserialization that work with the JSON
API specification. If you wish to have more control over the way instances of your
models are converted to Python dictionary representations, you can specify a cus-
tom serialization class by providing it to APIManager.create_api() via the serializer
keyword argument. Similarly, to provide a deserialization function that converts a
Python dictionary representation to an instance of your model, use the deserializer
keyword argument. However, if you provide a serializer that fails to produce resource
objects that satisfy the JSON API specification, your client will receive non-compliant
responses!

Define your serialization functions like this:

from flask_restless import Serializer

class CustomSerializer(Serializer):
def __init__(attributes, relationships):

self.attributes = attributes
self.relationships = relationships

@property
def attributes_columns(self):

return set(self.attributes)

@property
def relationship_columns(self):

return set(self.relationships)

def serialize(self, instance, only=None):
return {'id': instance.id, 'type': 'custom', 'attributes': {}}

instance is an instance of a SQLAlchemy model and the only argument is a list; only
the fields (that is, the attributes and relationships) whose names appear as strings in
only should appear in the returned dictionary. The only exception is that the keys
'id' and 'type' must always appear, regardless of whether they appear in only. The
function must return a dictionary representation of the resource object.

For deserialization, define your custom deserialization function like this:

from flask_restless import Deserializer

class DefaultDeserializer(Deserializer):
(continues on next page)

1.5. Customizing the ReSTful interface 41

Flask-Restless Documentation,

(continued from previous page)

def deserialize(self, document):
return Person(...)

document is a dictionary representation of the complete incoming JSON API document,
where the data element contains the primary resource object. The function must return
an instance of the model that has the requested fields.

For example, if you create schema for your database models using Marshmallow, then
you use that library’s built-in serialization functions as follows:

class PersonSchema(Schema):
id = fields.Integer()
name = fields.String()

def make_object(self, data):
return Person(**data)

person_schema = PersonSchema()

class PersonSerializer(Serializer):
@property
def attributes_columns(self):

return {'name'}

@property
def relationship_columns(self):

return set()

def serialize(instance, only=None):
return person_schema.dump(instance).data

class PersonDeserializer(Deserializer):
def deserialize(self, document):

return person_schema.load(data).data

person_serializer = PersonSerializer()
person_deserializer = PersonDeserializer()

manager = APIManager(app, session=session)
manager.create_api(Person, methods=['GET', 'POST'],

serializer=person_serializer,
deserializer=person_deserializer)

42 Chapter 1. User’s guide

https://marshmallow.readthedocs.org

Flask-Restless Documentation,

Per-model serialization

The correct serialization function will be used for each type of SQLAlchemy model
for which you invoke APIManager.create_api(). For example, if you create two APIs,
one for Person objects and one for Article objects,

manager.create_api(Person, serializer=person_serializer)
manager.create_api(Article, serializer=article_serializer)

and then make a request like

GET /api/article/1?include=author HTTP/1.1
Host: example.com
Accept: application/vnd.api+json

then Flask-Restless-NG will use the article_serializer instance to serialize the pri-
mary data (that is, the top-level data element in the response document) and the
person_serializer to serialize the included Person resource.

1.5.7 Capturing validation errors

By default, no validation is performed by Flask-Restless; if you want validation, imple-
ment it yourself in your database models. However, by specifying a list of exceptions
raised by your backend on validation errors, Flask-Restless-NG will forward messages
from raised exceptions to the client in an error response.

For example, if your validation framework includes an exception called
ValidationError, then call the APIManager.create_api() method with the
validation_exceptions keyword argument:

from cool_validation_framework import ValidationError
apimanager.create_api(Person, validation_exceptions=[ValidationError],

methods=['PATCH', 'POST'])

Note: Currently, Flask-Restless expects that an instance of a specified validation error
will have a errors attribute, which is a dictionary mapping field name to error de-
scription (note: one error per field). If you have a better, more general solution to this
problem, please visit our issue tracker.

Now when you make POST and PATCH requests with invalid fields, the JSON re-
sponse will look like this:

HTTP/1.1 400 Bad Request

{
"errors": [

(continues on next page)

1.5. Customizing the ReSTful interface 43

https://github.com/mrevutskyi/flask-restless-ng/issues
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc5789#section-2

Flask-Restless Documentation,

(continued from previous page)

{
"status": 400,
"title": "Validation error",
"detail": "age: must be an integer"

}
]

}

1.5.8 Request preprocessors and postprocessors

To apply a function to the request parameters and/or body before the request is pro-
cessed, use the preprocessors keyword argument. To apply a function to the response
data after the request is processed (immediately before the response is sent), use the
postprocessors keyword argument. Both preprocessors and postprocessors must be
a dictionary which maps HTTP method names as strings (with exceptions as described
below) to a list of functions. The specified functions will be applied in the order given
in the list.

There are many different routes on which you can apply preprocessors and postpro-
cessors, depending on HTTP method type, whether the client is accessing a resource
or a relationship, whether the client is accessing a collection or a single resource, etc.

This table states the preprocessors that apply to each type of endpoint.

preprocessor name applies to URLs like. . .
GET_COLLECTION /api/person
GET_RESOURCE /api/person/1
GET_RELATION /api/person/1/articles
GET_RELATED_RESOURCE /api/person/1/articles/2
DELETE_RESOURCE /api/person/1
POST_RESOURCE /api/person
PATCH_RESOURCE /api/person/1
GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

This table states the postprocessors that apply to each type of endpoint.

44 Chapter 1. User’s guide

Flask-Restless Documentation,

postprocessor name applies to URLs like. . .
GET_COLLECTION /api/person
GET_RESOURCE /api/person/1
GET_TO_MANY_RELATION /api/person/1/articles
GET_TO_ONE_RELATION /api/articles/1/author
GET_RELATED_RESOURCE /api/person/1/articles/2
DELETE_RESOURCE /api/person/1
POST_RESOURCE /api/person
PATCH_RESOURCE /api/person/1
GET_TO_MANY_RELATIONSHIP /api/person/1/relationships/articles
GET_TO_ONE_RELATIONSHIP /api/articles/1/relationships/author
GET_RELATIONSHIP /api/person/1/relationships/articles
DELETE_RELATIONSHIP /api/person/1/relationships/articles
POST_RELATIONSHIP /api/person/1/relationships/articles
PATCH_RELATIONSHIP /api/person/1/relationships/articles

Each type of preprocessor or postprocessor requires different arguments. For prepro-
cessors:

preprocessor name keyword arguments
GET_COLLECTION filters, sort
GET_RESOURCE resource_id
GET_RELATION resource_id, relation_name, filters, sort
GET_RELATED_RESOURCE resource_id, relation_name,

related_resource_id
DELETE_RESOURCE resource_id
POST_RESOURCE data
PATCH_RESOURCE resource_id, data
GET_RELATIONSHIP resource_id, relation_name
DELETE_RELATIONSHIP resource_id, relation_name
POST_RELATIONSHIP resource_id, relation_name, data
PATCH_RELATIONSHIP resource_id, relation_name, data

For postprocessors:

1.5. Customizing the ReSTful interface 45

Flask-Restless Documentation,

postprocessor name keyword arguments
GET_COLLECTION result, filters, sort
GET_RESOURCE result
GET_TO_MANY_RELATION result, filters, sort
GET_TO_ONE_RELATION result
GET_RELATED_RESOURCE result
DELETE_RESOURCE was_deleted
POST_RESOURCE result
PATCH_RESOURCE result
GET_TO_MANY_RELATIONSHIP result, filters, sort
GET_TO_ONE_RELATIONSHIP result
DELETE_RELATIONSHIP was_deleted
POST_RELATIONSHIP none
PATCH_RELATIONSHIP none

How can one use these tables to create a preprocessor or postprocessor? If you want to
create a preprocessor that will be applied on GET requests to /api/person, first define
a function that accepts the keyword arguments you need, and has a **kw argument
for any additional keyword arguments (and any new arguments that may appear in
future versions of Flask-Restless):

def fetch_preprocessor(filters=None, sort=None, **kw):
Here perform any application-specific code...

Next, instruct these preprocessors to be applied by Flask-Restless by using the
preprocessors keyword argument to APIManager.create_api(). The value of this ar-
gument must be a dictionary in which each key is a string containing a processor name
and each value is a list of functions to be applied for that request:

preprocessors = {'GET_COLLECTION': [fetch_preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

For preprocessors for endpoints of the form /api/person/1, a returned value will be
interpreted as the resource ID for the request. (Remember, as described in Resource ID
must be a string, the returned ID must be a string.) For example, if a preprocessor for
a GET request to /api/person/1 returns the string 'foo', then Flask-Restless will be-
have as if the request were originally for the URL /api/person/foo. For preprocessors
for endpoints of the form /api/person/1/articles or /api/person/1/relationships/
articles, the function can return either one value, in which case the resource ID will
be replaced with the return value, or a two-tuple, in which case both the resource ID
and the relationship name will be replaced. Finally, for preprocessors for endpoints of
the form /api/person/1/articles/2, the function can return one, two, or three values;
if three values are returned, the resource ID, the relationship name, and the related
resource ID are all replaced. (If multiple preprocessors are specified for a single HTTP
method and each one has a return value, Flask-Restless will only remember the value
returned by the last preprocessor function.)

Those preprocessors and postprocessors that accept dictionaries as parameters can

46 Chapter 1. User’s guide

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1

Flask-Restless Documentation,

(and should) modify their arguments in-place. That means the changes made to, for
example, the result dictionary will be seen by the Flask-Restless view functions and
ultimately returned to the client.

Note: For more information about the filters keyword arguments, see Filtering. For
more information about sort keyword argument, see Sorting.

In order to halt the preprocessing or postprocessing and return an error response
directly to the client, your preprocessor or postprocessor functions can raise a
ProcessingException. If a function raises this exception, no preprocessing or post-
processing functions that appear later in the list specified when the API was created
will be invoked. For example, an authentication function can be implemented like
this:

def check_auth(resource_id=None, **kw):
Here, get the current user from the session.
current_user = ...
Next, check if the user is authorized to modify the specified
instance of the model.
if not is_authorized_to_modify(current_user, instance_id):

raise ProcessingException(detail='Not Authorized', status=401)
manager.create_api(Person, preprocessors=dict(GET_RESOURCE=[check_auth]))

The ProcessingException allows you to specify as keyword arguments to the con-
structor the elements of the JSON API error object. If no arguments are provided, the
error is assumed to have status code 400 Bad Request.

Universal preprocessors and postprocessors

New in version 0.13.0.

The previous section describes how to specify a preprocessor or postprocessor on a
per-API (that is, a per-model) basis. If you want a function to be executed for all APIs
created by a APIManager, you can use the preprocessors or postprocessors keyword
arguments in the constructor of the APIManager class. These keyword arguments have
the same format as the corresponding ones in the APIManager.create_api() method
as described above. Functions specified in this way are prepended to the list of pre-
processors or postprocessors specified in the APIManager.create_api() method.

This may be used, for example, if all POST requests require authentication:

from flask import Flask
from flask_restless import APIManager
from flask_restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User
from mymodels import session

(continues on next page)

1.5. Customizing the ReSTful interface 47

https://jsonapi.org/format/#error-objects
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3

Flask-Restless Documentation,

(continued from previous page)

def auth_func(*args, **kw):
if not current_user.is_authenticated():

raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
preprocessors = {'POST_RESOURCE': [auth_func]}
api_manager = APIManager(app, session=session, preprocessors=preprocessors)
api_manager.create_api(User)

Preprocessors for collections

When the server receives, for example, a GET request for /api/person, Flask-Restless
interprets this request as a search with no filters (that is, a search for all instances of
Person without exception). In other words, a GET request to /api/person is roughly
equivalent to the same request to /api/person?filter[objects]=[]. Therefore, if you
want to filter the set of Person instances returned by such a request, you can create
a GET_COLLECTION preprocessor that appends filters to the filters keyword argument.
For example:

def preprocessor(filters=None, **kw):
This checks if the preprocessor function is being called before a
request that does not have search parameters.
if filters is None:

return
Create the filter you wish to add; in this case, we include only
instances with ``id`` not equal to 1.
filt = dict(name='id', op='neq', val=1)
Append your filter to the list of filters.
filters.append(filt)

preprocessors = {'GET_COLLECTION': [preprocessor]}
manager.create_api(Person, preprocessors=preprocessors)

1.5.9 Custom queries

In cases where it is not possible to use preprocessors or postprocessors (Request pre-
processors and postprocessors) efficiently, you can provide a custom query attribute
to your model instead. The attribute can either be a SQLAlchemy query expres-
sion or a class method that returns a SQLAlchemy query expression. Flask-Restless
will use this query attribute internally, however it is defined, instead of the default
session.query(Model) (in the pure SQLAlchemy case) or Model.query (in the Flask-
SQLAlchemy case). Flask-Restless uses a query during most GET and PATCH requests
to find the model(s) being requested.

48 Chapter 1. User’s guide

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc5789#section-2

Flask-Restless Documentation,

You may want to use a custom query attribute if you want to reveal only certain in-
formation to the client. For example, if you have a set of people and you only want
to reveal information about people from the group named “students”, define a query
class method this way:

class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
groupname = Column(Unicode)
people = relationship('Person')

class Person(Base):
__tablename__ = 'person'
id = Column(Integer, primary_key=True)
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship('Group')

@classmethod
def query(cls):

original_query = session.query(cls)
condition = (Group.groupname == 'students')
return original_query.join(Group).filter(condition)

Then GET requests to, for example, /api/person will only reveal instances of Person
who also are in the group named “students”.

Requiring authentication for some methods

If you want certain HTTP methods to require authentication, use preprocessors:

from flask import Flask
from flask.ext.restless import APIManager
from flask.ext.restless import ProcessingException
from flask.ext.login import current_user
from mymodels import User

def auth_func(*args, **kwargs):
if not current_user.is_authenticated():

raise ProcessingException(detail='Not authenticated', status=401)

app = Flask(__name__)
api_manager = APIManager(app)
Set `auth_func` to be a preprocessor for any type of endpoint you want to
be guarded by authentication.
preprocessors = {'GET_RESOURCE': [auth_func], ...}
api_manager.create_api(User, preprocessors=preprocessors)

For a more complete example using Flask-Login, see the examples/

1.5. Customizing the ReSTful interface 49

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://packages.python.org/Flask-Login

Flask-Restless Documentation,

server_configurations/authentication directory in the source distribution, or
view the authentication example online.

50 Chapter 1. User’s guide

https://github.com/mrevutskyi/flask-restless-ng/tree/master/examples/server_configurations/authentication

CHAPTER

TWO

API REFERENCE

A technical description of the classes, functions, and idioms of Flask-Restless.

2.1 API

This part of the documentation documents all the public classes and functions in Flask-
Restless-NG.

2.1.1 The API Manager class

class flask_restless.APIManager(app=None, session=None, preprocessors=None,
postprocessors=None, url_prefix='/api',
include_links: bool = False)

Provides a method for creating a public ReSTful JSON API with respect to a
given Flask application object.

The Flask object can either be specified in the constructor, or after instantiation
time by calling the init_app() method.

app is the Flask object containing the user’s Flask application.

session is the Session object in which changes to the database will be made.

For example, to use this class with models defined in pure SQLAlchemy:

from flask import Flask
from flask.ext.restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
my_session = Session()
app = Flask(__name__)
api_manager = APIManager(app, session=my_session)

51

https://docs.python.org/3/library/functions.html#bool
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://docs.sqlalchemy.org/en/20/orm/session_api.html#sqlalchemy.orm.Session

Flask-Restless Documentation,

url_prefix is the URL prefix at which each API created by this instance will be ac-
cessible. For example, if this is set to 'foo', then this method creates endpoints of
the form /foo/<collection_name> when create_api() is called. If the url_prefix
is set in the create_api(), the URL prefix set in the constructor will be ignored
for that endpoint.

postprocessors and preprocessors must be dictionaries as described in the section
Request preprocessors and postprocessors. These preprocessors and postprocessors
will be applied to all requests to and responses from APIs created using this API-
Manager object. The preprocessors and postprocessors given in these keyword
arguments will be prepended to the list of processors given for each individ-
ual model when using the create_api_blueprint() method (more specifically,
the functions listed here will be executed before any functions specified in the
create_api_blueprint() method). For more information on using preprocessors
and postprocessors, see Request preprocessors and postprocessors.

include_links controls whether to include link objects in resource objects https:
//jsonapi.org/format/#document-links

init_app(app)
Registers any created APIs on the given Flask application.

This function should only be called if no Flask application was provided in
the app keyword argument to the constructor of this class.

When this function is invoked, any blueprint created by a previous
invocation of create_api() will be registered on app by calling the
register_blueprint() method.

To use this method with pure SQLAlchemy, for example:

from flask import Flask
from flask_restless import APIManager
from sqlalchemy import create_engine
from sqlalchemy.orm.session import sessionmaker

engine = create_engine('sqlite:////tmp/mydb.sqlite')
Session = sessionmaker(bind=engine)
mysession = Session()

Here create model classes, for example User, Comment, etc.
...

Create the API manager and create the APIs.
api_manager = APIManager(session=mysession)
api_manager.create_api(User)
api_manager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.

(continues on next page)

52 Chapter 2. API reference

https://jsonapi.org/format/#document-links
https://jsonapi.org/format/#document-links
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask.register_blueprint

Flask-Restless Documentation,

(continued from previous page)

app = Flask(__name__)
api_manager.init_app(app)

and with models defined with Flask-SQLAlchemy:

from flask import Flask
from flask_restless import APIManager
from flask_sqlalchemy import SQLAlchemy

db = SQLALchemy(app)

Here create model classes, for example User, Comment, etc.
...

Create the API manager and create the APIs.
api_manager = APIManager(session=db.session)
api_manager.create_api(User)
api_manager.create_api(Comment)

Later, call `init_app` to register the blueprints for the
APIs created earlier.
app = Flask(__name__)
api_manager.init_app(app)

create_api(*args, **kw)

Creates and possibly registers a ReSTful API blueprint for the given
SQLAlchemy model.

If a Flask application was provided in the constructor of this class, the cre-
ated blueprint is immediately registered on that application. Otherwise,
the blueprint is stored for later registration when the init_app() method
is invoked. In that case, the blueprint will be registered each time the
init_app() method is invoked.

The keyword arguments for this method are exactly the same as those for
create_api_blueprint(), and are passed directly to that method. However,
unlike that method, this method accepts only a single positional argument,
model, the SQLAlchemy model for which to create the API. A UUID will be
automatically generated for the blueprint name.

For example, if you only wish to create APIs on a single Flask application:

app = Flask(__name__)
session = ... # create the SQLAlchemy session
manager = APIManager(app=app, session=session)
manager.create_api(User)

If you want to create APIs before having access to a Flask application, you
can call this method before calling init_app():

2.1. API 53

Flask-Restless Documentation,

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app = Flask(__name__)
manager.init_app(app)

If you want to create an API and register it on multiple Flask applications,
you can call this method once and init_app() multiple times with different
app arguments:

session = ... # create the SQLAlchemy session
manager = APIManager(session=session)
manager.create_api(User)

later...
app1 = Flask('application1')
app2 = Flask('application2')
manager.init_app(app1)
manager.init_app(app2)

create_api_blueprint(name: str, model, methods=frozenset({'GET'}), url_prefix:
Optional[str] = None, collection_name: Optional[str] =
None, only=None, exclude=None,
additional_attributes=None, validation_exceptions=None,
page_size: int = 10, max_page_size: int = 100,
preprocessors=None, postprocessors=None, primary_key:
Optional[str] = None, serializer: Optional[Serializer] =
None, deserializer: Optional[Deserializer] = None,
includes=None, allow_to_many_replacement: bool = False,
allow_delete_from_to_many_relationships: bool = False,
allow_client_generated_ids: bool = False)

Creates and returns a ReSTful API interface as a blueprint, but does not
register it on any flask.Flask application.

The endpoints for the API for model will be available at <url_prefix>/
<collection_name>. If collection_name is None, the lowercase name of the
provided model class will be used instead, as accessed by model.__table__.
name. (If any black magic was performed on model.__table__, this will be
reflected in the endpoint URL.) For more information, see Collection name.

This function must be called at most once for each model for which you
wish to create a ReSTful API. Its behavior (for now) is undefined if called
more than once.

This function returns the flask.Blueprint object that handles the endpoints
for the model. The returned Blueprint has not been registered with the
Flask application object specified in the constructor of this class, so you

54 Chapter 2. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Blueprint
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Blueprint
https://flask.palletsprojects.com/en/3.0.x/api/#flask.Flask

Flask-Restless Documentation,

will need to register it yourself to make it available on the application. If
you don’t need access to the Blueprint object, use create_api_blueprint()
instead, which handles registration automatically.

name is the name of the blueprint that will be created.

model is the SQLAlchemy model class for which a ReSTful interface will be
created.

app is the Flask object on which we expect the blueprint created in this
method to be eventually registered. If not specified, the Flask application
specified in the constructor of this class is used.

methods is a list of strings specifying the HTTP methods that will be made
available on the ReSTful API for the specified model.

• If 'GET' is in the list, GET requests will be allowed at endpoints for
collections of resources, resources, to-many and to-one relations of re-
sources, and particular members of a to-many relation. Furthermore,
relationship information will be accessible. For more information, see
Fetching resources and relationships.

• If 'POST' is in the list, POST requests will be allowed at endpoints for
collections of resources. For more information, see Creating resources.

• If 'DELETE' is in the list, DELETE requests will be allowed at endpoints
for individual resources. For more information, see Deleting resources.

• If 'PATCH' is in the list, PATCH requests will be allowed at end-
points for individual resources. Replacing a to-many relationship
when issuing a request to update a resource can be enabled by setting
allow_to_many_replacement to True.

Furthermore, to-one relationships can be updated at the relation-
ship endpoints under an individual resource via PATCH requests.
This also allows you to add to a to-many relationship via the
POST method, delete from a to-many relationship via the DELETE
method (if allow_delete_from_to_many_relationships is set to True),
and replace a to-many relationship via the PATCH method (if
allow_to_many_replacement is set to True). For more information, see
Updating resources and Updating relationships.

The default set of methods provides a read-only interface (that is, only GET
requests are allowed).

url_prefix is the URL prefix at which this API will be accessible. For example,
if this is set to '/foo', then this method creates endpoints of the form /
foo/<collection_name>. If not set, the default URL prefix specified in the
constructor of this class will be used. If that was not set either, the default
'/api' will be used.

collection_name is the name of the collection specified by the given model
class to be used in the URL for the ReSTful API created. If this is not spec-
ified, the lowercase name of the model will be used. For example, if this

2.1. API 55

https://flask.palletsprojects.com/en/3.0.x/api/#flask.Blueprint
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.5
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.5
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1

Flask-Restless Documentation,

is set to 'foo', then this method creates endpoints of the form /api/foo,
/api/foo/<id>, etc.

If only is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it
is a list, only these fields will appear in the resource object representation
of an instance of model. In other words, only is a allowlist of fields. The id
and type elements of the resource object will always be present regardless
of the value of this argument. If only contains a string that does not name a
column in model, it will be ignored.

If additional_attributes is a list of strings, these attributes of the model will
appear in the JSON representation of an instance of the model. This is useful
if your model has an attribute that is not a SQLAlchemy column but you
want it to be exposed. If any of the attributes does not exist on the model, a
AttributeError is raised.

If exclude is not None, it must be a list of columns and/or relationships of the
specified model, given either as strings or as the attributes themselves. If it is
a list, all fields except these will appear in the resource object representation
of an instance of model. In other words, exclude is an blocklist of fields. The
id and type elements of the resource object will always be present regardless
of the value of this argument. If exclude contains a string that does not name
a column in model, it will be ignored.

If either only or exclude is not None, exactly one of them must be specified; if
both are not None, then this function will raise a IllegalArgumentError.

See Specifying which fields appear in responses for more information on speci-
fying which fields will be included in the resource object representation.

validation_exceptions is the tuple of possible exceptions raised by validation
of your database models. If this is specified, validation errors will be cap-
tured and forwarded to the client in the format described by the JSON API
specification. For more information on how to use validation, see Capturing
validation errors.

page_size must be a positive integer that represents the default page size for
responses that consist of a collection of resources. Requests made by clients
may override this default by specifying page_size as a query parameter.
max_page_size must be a positive integer that represents the maximum page
size that a client can request. Even if a client specifies that greater than
max_page_size should be returned, at most max_page_size results will be re-
turned. For more information, see Pagination.

serializer and deserializer are custom serialization classes. See Custom serial-
ization.

preprocessors is a dictionary mapping strings to lists of functions. Each
key represents a type of endpoint (for example, 'GET_RESOURCE' or
'GET_COLLECTION'). Each value is a list of functions, each of which will be
called before any other code is executed when this API receives the corre-

56 Chapter 2. API reference

https://docs.python.org/3/library/exceptions.html#AttributeError

Flask-Restless Documentation,

sponding HTTP request. The functions will be called in the order given
here. The postprocessors keyword argument is essentially the same, except
the given functions are called after all other code. For more information on
preprocessors and postprocessors, see Request preprocessors and postproces-
sors.

primary_key is a string specifying the name of the column of model to use as
the primary key for the purposes of creating URLs. If the model has exactly
one primary key, there is no need to provide a value for this. If model has
two or more primary keys, you must specify which one to use. For more
information, see Specifying one of many primary keys.

includes must be a list of strings specifying which related resources will be
included in a compound document by default when fetching a resource ob-
ject representation of an instance of model. Each element of includes is the
name of a field of model (that is, either an attribute or a relationship). For
more information, see Inclusion of related resources.

If allow_to_many_replacement is True and this API allows PATCH requests,
the server will allow two types of requests. First, it allows the client to
replace the entire collection of resources in a to-many relationship when
updating an individual instance of the model. Second, it allows the client
to replace the entire to-many relationship when making a PATCH request
to a to-many relationship endpoint. This is False by default. For more
information, see Updating resources and Updating relationships.

If allow_delete_from_to_many_relationships is True and this API allows
PATCH requests, the server will allow the client to delete resources from
any to-many relationship of the model. This is False by default. For more
information, see Updating relationships.

If allow_client_generated_ids is True and this API allows POST requests, the
server will allow the client to specify the ID for the resource to create. JSON
API recommends that this be a UUID. This is False by default. For more
information, see Creating resources.

If allow_functions is True, then GET requests to /api/eval/
<collection_name> will return the result of evaluating SQL functions
specified in the body of the request. For information on the request format,
see functionevaluation. This is False by default.

Warning: This is deprecated and going to be removed in the next major
version

Warning: If allow_functions is True, you must not create an API for a
model whose name is 'eval'.

2.1. API 57

https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc5789#section-2
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3
https://www.rfc-editor.org/rfc/rfc7231#section-4.3.1

Flask-Restless Documentation,

2.1.2 Serialization helpers

class flask_restless.Serializer

An object that, when called, returns a dictionary representation of a given in-
stance of a SQLAlchemy model.

class flask_restless.Deserializer(session, model, api_manager)
An object that, when called, returns an instance of the SQLAlchemy model spec-
ified at instantiation time.

session is the SQLAlchemy session in which to look for any related resources.

model is the class of which instances will be created by the __call__() method.

This is a base class with no implementation.

class flask_restless.SerializationException(instance, message=None,
resource=None, resource_type=None,
resource_id=None, *args, **kw)

Raised when there is a problem serializing an instance of a SQLAlchemy model
to a dictionary representation.

instance is the (problematic) instance on which Serializer.__call__() was in-
voked.

message is an optional string describing the problem in more detail.

resource is an optional partially-constructed serialized representation of
instance.

Each of these keyword arguments is stored in a corresponding instance attribute
so client code can access them.

class flask_restless.DeserializationException(*args, **kw)

Raised when there is a problem deserializing a Python dictionary to an instance
of a SQLAlchemy model.

Subclasses that wish to provide more detailed about the problem should set the
detail attribute to be a string, either as a class-level attribute or as an instance
attribute.

2.1.3 Pre- and postprocessor helpers

class flask_restless.ProcessingException(id_=None, links=None, status=400,
code=None, title=None, detail=None,
source=None, meta=None, *args, **kw)

Raised when a preprocessor or postprocessor encounters a problem.

This exception should be raised by functions supplied in the preprocessors and
postprocessors keyword arguments to APIManager.create_api. When this ex-
ception is raised, all preprocessing or postprocessing halts, so any processors
appearing later in the list will not be invoked.

58 Chapter 2. API reference

Flask-Restless Documentation,

The keyword arguments id_, href status, code, title, detail, links, paths cor-
respond to the elements of the JSON API error object; the values of these key-
word arguments will appear in the error object returned to the client.

Any additional positional or keyword arguments are supplied directly to the
superclass, werkzeug.exceptions.HTTPException.

2.1. API 59

Flask-Restless Documentation,

60 Chapter 2. API reference

CHAPTER

THREE

ADDITIONAL INFORMATION

Meta-information on Flask-Restless.

3.1 Similar projects

If Flask-Restless doesn’t work for you, here are some similar Python packages that in-
tend to simplify the creation of ReSTful APIs (in various combinations of Web frame-
works and database backends):

• Eve

• Flask-Peewee

• Flask-RESTful

• simpleapi

• Tastypie

• Django REST framework

• Restless

3.2 Copyright and license

Flask-Restless is copyright 2011 Lincoln de Sousa and copyright 2012, 2013, 2014, 2015,
2016 Jeffrey Finkelstein and contributors, and is dual-licensed under the following two
copyright licenses:

• the GNU Affero General Public License, either version 3 or (at your option) any
later version

• the 3-clause BSD License

For more information, see the files LICENSE.AGPL and LICENSE.BSD in top-level direc-
tory of the source distribution.

The artwork for Flask-Restless is copyright 2012 Jeffrey Finkelstein. The couch logo is
licensed under the Creative Commons Attribute-ShareAlike 4.0 license. The original

61

http://python-eve.org
https://flask-peewee.readthedocs.org
https://flask-restful.readthedocs.org
https://simpleapi.readthedocs.org
https://django-tastypie.readthedocs.org
http://www.django-rest-framework.org
https://restless.readthedocs.org
http://fsf.org/licenses/agpl.html
http://creativecommons.org/licenses/by-sa/4.0

Flask-Restless Documentation,

image is a scan of a (now public domain) illustration by Arthur Hopkins in a serial
edition of “The Return of the Native” by Thomas Hardy published in October 1878.
The couch logo with the “Flask-Restless” text is licensed under the Flask Artwork
License.

The documentation is licensed under the Creative Commons Attribute-ShareAlike 4.0
license.

3.3 Changelog

3.4 Changes in Flask-Restless-NG

3.4.1 Unreleased

• Dropped savalidation support

3.4.2 Version 3.1.0 (2023-10-14):

• Added support for Flask 3.0

• Added support for Python 3.11

• Added support for Python 3.12

• Dropped support for Python 3.7

3.4.3 Version 3.0.0 (2023-03-19):

• Added support for SQLAlchemy 2.0

• Minimum required SQLAlchemy version: 1.4.18

• Minimum required Flask version: 2.2

• Drop Functions API support

3.4.4 Version 2.5.1 (2023-03-15):

• Restricted SQLAlchemy to <2.0. Support of 2.0 requires significant changes and
will be a major release

62 Chapter 3. Additional information

http://flask.pocoo.org/docs/license/#flask-artwork-license
http://flask.pocoo.org/docs/license/#flask-artwork-license
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0

Flask-Restless Documentation,

3.4.5 Version 2.5.0 (2022-12-24):

• Added support for X-Forwarded- headers (pagination links now use the original
host/proto) (#38)

3.4.6 Version 2.4.0 (2022-11-11):

• Clients can disable default sorting by using sort=0 query parameter

3.4.7 Version 2.3.1:

• Fix for an incorrect error message

• Returns 500 instead 400 response code in case of serialization errors in POST
requests

• Fix for pagination Flask-SQLAlchemy (now works also with 3.0+) (#37)

3.4.8 Version 2.3.0

• Allow sorting of nested fields

3.4.9 Version 2.2.9

• Do not erase type field from attributes (#31)

3.4.10 Version 2.2.8

• Make sure that POST response contains actual values from the DB

3.4.11 Version 2.2.7

• Fix Server Error for null relationship in POST (#29)

• Allow session rollback in PATCH_RESOURCE, PATCH_RELATIONSHIP,
POST_RELATIONSHIP post-processors (#28)

3.4. Changes in Flask-Restless-NG 63

Flask-Restless Documentation,

3.4.12 Version 2.2.6

• Escape user input in error messages to prevent potential server-side cross-site
scripting

• ‘status’ field in error objects is now a string, as required by JSON API standard
https://jsonapi.org/format/#error-objects

• Returns ‘400’ status if page number is provided but page size is 0

• Returns ‘400’ status if unknown field was used for sorting

• Allow rolling back the current session in POST_RESOURCE postprocessors (#28)

3.4.13 Version 2.2.5

• Fix for #27 ‘relationship with secondary generates incorrect query’

3.4.14 Version 2.2.4

• Do not log exceptions for user related errors (bad query, etc)

• Update safe check for selectinload for `includes

• Update SQLAlchemy dependency to 1.3.6+

3.4.15 Version 2.2.3

• Add safe check for selectinload for includes

3.4.16 Version 2.2.2

• Fix an incorrect selectinload query for models with custom select queries

3.4.17 Version 2.2.1

• Minor improvements and fixes

64 Chapter 3. Additional information

https://jsonapi.org/format/#error-objects

Flask-Restless Documentation,

3.4.18 Version 2.2.0

• Serialize To-One relationships using foreign key, instead of trying to fetch the
whole

relationship object from the database

3.4.19 Version 2.1.1

• Only fetch primary keys from a database for relationships when no filtering is
required

3.4.20 Version 2.1.0

• Re-added FunctionsAPI until the next major release to let users to implement an
alternative #23

3.4.21 Version 2.0.3

• Fix: #26 - selectinload is broken for models that have primary keys other than
‘id’. Disabled until a new schema is

implemented

• Make ‘primary_key’ optional again #25 (by @tanj)

3.4.22 Version 2.0.2

• Fixed import for SQLAlchemy 1.3 #22

3.4.23 Version 2.0.0

Refactored fetching resource collections: - SQL query optimizations for ‘include’ and
‘relationship’ objects, using selectinload

(3x-5x performance improvement when tested on large datasets)

• New parameter ‘include_links’ which controls should relationship objects in-
clude links. They are not required by JSON API, and disabling them significantly
improves performance

• New interfaces for Serializer and Deserializer classes.

• APIManager requires Serializer/Deserializer objects instead of functions for se-
rializer/deserializer options

Deprecations: - ‘single’ parameter is no longer supported - makes code complicated,
is not defined in JSON API specs and can be easily

3.4. Changes in Flask-Restless-NG 65

Flask-Restless Documentation,

replicated on a client side

• ‘group’ parameter is not longer supported - not defined in JSON API specifica-
tions, confusing and broken for PostrgeSQL

• JSONP callbacks are no longer supported - please reach out if you have a use
case for them

3.4.24 Version 1.0.6

• Prevent redundant SQL queries during pagination and resource inclusion

3.4.25 Version 1.0.5

• #16 - Fix: including child of empty relationship (by @sharky98)

3.4.26 Version 1.0.4

• #15: Support SQLAlchemy 1.4.x

3.4.27 Version 1.0.2

• #1, #13: Fix for relationship updates not being committed (by @sharky98)

• #12: Fix for 500 when trying to include Null/None relationship

• Added TSQuery operator (by @augustin)

3.4.28 Version 1.0.1

• #4: id is an optional attribute as long as Model has a primary key

• #6: Fix for flask_restless.views not being included in the installed package.

3.4.29 Version 1.0.0

• Performance improvement: url_for() changed to build url locally instead of del-
egating it to Flask

• This is the last release that is backward compatible with the original Flask-
Restless API.

66 Chapter 3. Additional information

Flask-Restless Documentation,

3.4.30 Version 0.0.2

• New serializer (2-3x faster)

• Added lru_cache to helpers to reduce number of recursive calls (better perfor-
mance)

3.4.31 Version 0.0.1

• Fixed 1.0+ compatibility

• Fix for hybrid_property

3.5 Original Flask-Restless

You can find the full changelog in the original repo

3.5. Original Flask-Restless 67

https://github.com/jfinkels/flask-restless/blob/master/CHANGES

Flask-Restless Documentation,

68 Chapter 3. Additional information

INDEX

A
APIManager (class in flask_restless), 51

C
create_api() (flask_restless.APIManager

method), 53
create_api_blueprint()

(flask_restless.APIManager method),
54

D
DeserializationException (class in

flask_restless), 58
Deserializer (class in flask_restless), 58

F
flask_restless

module, 51

I
init_app() (flask_restless.APIManager

method), 52

M
module

flask_restless, 51

P
ProcessingException (class in

flask_restless), 58

S
SerializationException (class in

flask_restless), 58
Serializer (class in flask_restless), 58

69

	User’s guide
	Downloading and installing Flask-Restless-NG
	Quickstart
	Creating API endpoints
	Deferred API registration

	Requests and responses
	Fetching resources and relationships
	Inclusion of related resources
	Specifying which fields appear in responses
	Sorting
	Pagination
	Filtering
	Quick client examples for filtering
	Filter objects
	Operators
	Filter object examples
	Attribute greater than a value
	Arbitrary Boolean expression of filters
	Comparing two attributes
	Using has and any

	Creating resources
	Deleting resources
	Updating resources
	Updating relationships
	Resource ID must be a string
	Trailing slashes in URLs
	Date and time fields
	Errors and error messages
	Cross-Origin Resource Sharing (CORS)

	Customizing the ReSTful interface
	HTTP methods
	API prefix
	Collection name
	Specifying one of many primary keys
	Enable bulk operations
	Custom serialization
	Per-model serialization

	Capturing validation errors
	Request preprocessors and postprocessors
	Universal preprocessors and postprocessors
	Preprocessors for collections

	Custom queries
	Requiring authentication for some methods

	API reference
	API
	The API Manager class
	Serialization helpers
	Pre- and postprocessor helpers

	Additional information
	Similar projects
	Copyright and license
	Changelog
	Changes in Flask-Restless-NG
	Unreleased
	Version 3.1.0 (2023-10-14):
	Version 3.0.0 (2023-03-19):
	Version 2.5.1 (2023-03-15):
	Version 2.5.0 (2022-12-24):
	Version 2.4.0 (2022-11-11):
	Version 2.3.1:
	Version 2.3.0
	Version 2.2.9
	Version 2.2.8
	Version 2.2.7
	Version 2.2.6
	Version 2.2.5
	Version 2.2.4
	Version 2.2.3
	Version 2.2.2
	Version 2.2.1
	Version 2.2.0
	Version 2.1.1
	Version 2.1.0
	Version 2.0.3
	Version 2.0.2
	Version 2.0.0
	Version 1.0.6
	Version 1.0.5
	Version 1.0.4
	Version 1.0.2
	Version 1.0.1
	Version 1.0.0
	Version 0.0.2
	Version 0.0.1

	Original Flask-Restless

	Index

